Euler's Cotangent and Sine factorization formulae
The following session illustrates how to obtain Euler's cotangent formula and sine factorization formula:
They play important role relating to zeta function, which will be treated in other posts in the future.
The file EulerCot.mac can be obtained from here.
Maxima 5.20.0 http://maxima.sourceforge.net
using Lisp CMU Common Lisp 19f (19F)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) block(load(("/Users/yasube/Programming/test-imaxima/cmucl/5.20.0/share/maxima/5.20.0/emacs/imaxima.lisp")), linenum:0)$
(%i1) kill(all);
(%i1) load(fourie)$
(%i2) "In this file, the following two equations are proved.
They are originated by Euler."$
(%i3) %pi*cot(%pi*t)=2*t*sum(1/(t^2-n^2),n,1,inf)+1/t;
(%i4) sinfact:sin(%pi*t)=%pi*t*product(1-t^2/n^2,n,1,inf);
(%i5) assume(t>0);
(%i6) assume(t-n>0);
(%i7) declare(n,integer);
(%i8) an:fourier(cos(t*x),x,%pi);
(%i11) an0:rhs(ev(first(an)));
(%i12) an2:factor(trigexpand(rhs(ev(second(an)))));
As the Fourier coefficients are obtained for cos(t x), we obtain the following formula.
(%i13) fo:cos(t*x)=an0+sum(an2*cos(n*x),n,1,inf);
(%i14) fo2:fo,x=%pi;
(%i15) fo3:fo2*%pi/sin(%pi*t);
(%i16) eucot:trigreduce(expand(fo3));
(%i18) "With this, we can show the factor of sine function:"$
(%i19) sinfact;
(%i20) "Taking the differential of log of left hand side:"$
(%i21) trigreduce(diff(log(lhs(sinfact)),t));
(%i22) "Taking the differential of log of right hand side:"$
(%i23) expand(factor(diff(log(rhs(sinfact)),t)));
(%i24) "According to the Euler's cotangent formula, the previous
two formula are eaual. Hence,"$
(%i25) sf1:sin(%pi*t)=C*t*product(1-t^2/n^2,n,1,inf);
(%i26) sf2:limit(sf1/t,t,0);
Maxima cannot compute this limit. We replace inf with 100 and how the limit is computed.
(%i27) sf3:subst(100,inf,sf2);
(%i28) sf3,nouns;
(%i29) "Hence we obtain:"$
(%i30) sf1, C=%pi;
Let's take a look at the graph of left and right hand side of the equation to make sure this holds.
(%i31) wxdraw2d(explicit(lhs(sinfact),t,-5,5), explicit(ev(subst(100,inf,rhs(sinfact)),simpproduct),t,-5,5));
(%i32)
No comments:
Post a Comment